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An extension of the Simplified Marker and Cell (SMAC) method for the numerical 
solution of incompressible flows is used to investigate transient flows that are almost 
three dimensional. The equations of motion are two dimensional but contain functions 
that account for the effects of a third dimension. The method that results from this 
extension may also be used for the simple incorporation of internal obstacles in two- 
dimensional 00~s. 

There is a class of incompressible fluid flow problems which, while having 
important three-dimensional effects, are nevertheless “almost” two-dimensional. 
Examples include flows between slowly contracting or dilating parallel rigid 
surfaces, such as might occur in an extrusion process, and flows over a smoothly 
sculptured terrain. Although these examples may be studied by a full three- 
dimensional numerical program such as the Simplified Marker and Cell (SMAC) [l] 
method, such calculations are extremely time consuming and require the largest 
computers now available. Alternatively, if the distance between the bounding 
surfaces is changing slowly with position, as for example in Fig. 3, then 
considerable simplification can be realized by the use of the approximate equations 
derived below. 

The equations are two dimensional, but contain functions that account for the 
effects of the third dimension. These functions may also be used to easily describe 
internal rigid obstacles in real two-dimensional flows. 

The equations of motion are solved numerically using a SMAC-like method 
and are illustrated with two calculational examples. 

* This work was performed under the auspices of the United States Atomic Energy Commission. 
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D&&erential Equations, Constallt Wall Conjiguration 

The starting point is the set of conservative equations for the velocity compo- 
nents, 21, v, and W, in the x, J), and z directions, respectively: 

The ratio of pressure to constant density is 4, while v is the constant coefficient 
of kinematic-viscosity. 

The flow is bounded by surfaces that lie at z -= a(x, v) and z = b(x, JI): with 
a < b. At these surfaces, the boundary conditions are 

Equations (l)-(4) are to be integrated from z = a to z = 6. For example, Eq. (1) 
then becomes 

*h au J ( z + $) dZ + W(b) - w(a) = 0. 
a - 

Using Eq. (5), we can obtain 

dz + u(b) s- + u(b) 2 - u(a) -$ - c(a) $$ = 13. 2 

According to Leibnitz’ rule, this can be transformed to 

ah +.b 
--j udz+-o 
ax a J aY a 

v dz = 0. (6) 
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In the same way, Eqs. (2) and (3) also can be transformed to eliminate the explicit 
dependence upon vertical velocity, W: 

a b b 

udz + ax s u2 dz + -?- uv dz n .r s a 

ud:+; 
J 

.b 

uv dz + a 
.b 

J aY a 
v” dz 

0 

=- s :zdz+vf(g + $j dz + v [($j,=, - (2) _ 1. (8) 
3-a 

Equation (4) could also be similarly transformed, but we shall replace it by some 
assumptions regarding the variations of the field variables with z, and accordingly 
no longer require it for the derivations. 

Equations (6)-(S) incorporate no assumptions; they are rigorous consequences 
of the starting equations. Our procedure for making them complete is to assume 
a specific form for the variation of u and v with z. With the bounding surfaces at 
rest, it would be appropriate to make the approximations 

Zf(X, y, 4 0 = 4% y, t>f(d 
4% y, ‘7, t> = V(& Y, Of(z) I (9) 

with f(z) = constant if the bounding surfaces are free-slip; f(z) would vanish 
at each wall and be parabolic (simulating Poiseuille flow) if the surfaces were no 
slip. Other possible forms for f(z) would include a semiparabolic form for a 
combination of no-slip and free-slip, and a law-of-the-wall form for turbulent 
flows. In this last case, however, the addition of Reynolds stress terms would 
also be required. 

It is convenient to let f(z) = 1.0 on some surface, which may lie between the 
bounding surfaces or coincide with one of them; on this surface u(x, v) and V(X, ~7) 
are the actual horizontal velocity components. Let 

t-(x., y) = j-’ f(z) dz, 

s(x, y) E j-$(z) dz. 
i a 
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Accordingly, the required equations become 

It has been assumed that 4 is independent of z, in analogy to the usual boundary- 
layer assumption, and the diffusion term has been modeled in a simple manner. 
‘The equations are now complete, the effects of the top and bottom walls being 
manifested in the variations of I’ and in the “friction” forces exerted by these 
surfaces. 

Alternatively, if each bounding surface were moving parallel to itself, not 
changing shape, an appropriate form for the velocities, in place of Eq. (9) would 
be 

where ~1, and II, are the prescribed wall velocities, and again f (zj vanishes at each 
wall. This form assumes that the complete flow is superimposed over a simple 
linear (Couette) velocity profile. With this, Eq. (11) remains the same, whereas 
Eqs. (12) and (13) become somewhat more complicated in appearance, although 
no more so insofar as the numerical solution is concerned, 

D$‘ierentiaE Equations, Vuriable Wall Conjguration 

A very similar set of equations arises if the walls are allowed to move non- 
parallel to itself. We examine the symmetric case, which the plane z = 0 Iies 
between two bounding surfaces, the motions of which mirror each other. Aiong 
z = 0, IV = 0, while along the upper surface, where z = b(x, y, t), 
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Integration of Eq. (1) gives 

(17) 

Integration of Eqs. (2) and (3) result in exactly the same equations as Eqs. (7) 
and (8), in which we put a = 0, and (&/a~), = (ii~/L+z)~ = 0. Thus, the principal 
effect of the moving wall appears to be manifested in Eq. (17). This is actually 
so if the wall is free slip, in which case we use Eq. (10) withf(z) = 1.0 and obtain 

-b$+bv(g+$), (19) 

m-4 

It is apparent that b is closely analogous to the density function for compressible 
flow, in this case, however, being prescribed as a function of position and time 
so that the three equations for 4, u, and v are complete. 

For a no-slip wall, f(z) would be parabolic and must vanish at the variable wall 
position, so that r and s are functions of time, as well as position. It also becomes 
important to distinguish whether each element of the bounding wall moves only 
in the z-direction, or whether it also moves in the horizontal plane. Each example 
requires special treatment of the equations, but the principals of the numerical 
solution remain the same, as illustrated in the following Section. 

Numerical Sohrtion of the Equations 

To illustrate the solution technique, we consider the case described by 
Eqs. (lo)-(13). Since the procedure so closely resembles that of the usual SMAC 
technique [l], we simply outline the novel aspects as follows. First, we observe 
that the equation for transport of the quantity 

is independent of the pressure. For this reason, a fmite-difference time-advancement 
cycle utilizing an arbitrary field of 4 values will nevertheless result in the correct 
value of Q everywhere except on the lateral boundaries of the flow field. In particu- 
lar, with $ 3 0, we may calculate tentative time-advanced velocities, G+1,2,j and 
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61,j+I;2 ) which, while not correct, implant into the mesh the correct value at all 
interior mesh points of the quantity (which is analogous to vorticity): 

FIG. 1. Field variables locations in computational cell. 

The indices label cell positions as shown in Fig. I. The full equations for rhis 
part of the calculation are 
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The friction coefficient, CL, is given by the expression 01 = f’(b) - f’(a), describing 
the velocity shear gradients at the bounding walls. 

Once the values of u’ and d have been determined, the problem is to find the 
final, correct velocities in such a way as to preserve the value of Q at every interior 
point, and simultaneously to satisfy the finite difference approximation to Eq. (lo), 
namely 

To accomplish this, we introduce a potential function, z,&, such that 

(25) 

Insertion of this into Eq. (21) shows that Q$i,j+l,2 = &i+liZ,j+llg, as required. 
If Bij is calculated using the definition in Eq. (24), with the 6, v” velocities, the 
result will generally not be zero. The goal is to achieve Diinal = 0, and accordingly 
we put Eqs. (25) and (26) into Eq. (24) to get an equation for determining & : 

+ & [Cb - a)i,fl-l/2($i,~+l - #i,.f> - tb - ahi-li2($i,i - #i-j-I>1 = Bij . 
(27) 

Once this equation has been solved for #ij, using either a direct-solution 
technique or an iterative procedure, the results can be used in Eqs. (25) and (26) 
to find the final velocities. 

Nothing in this derivation precludes the possibility of having lateral boundaries 
in the form of rigid walls, input sources, continuative outputs, or free surfaces. 
The boundary conditions for these are direct extensions of those that have been 
discussed in detail in [l]. 

INTERNAL OBSTACLES IN TWO-DIMENSIONAL FLOWS 

While the SMAC method readily allows arbitrary placement of internal obstacles 
in two-dimensional flows, field variables stored for obstacle cells that have two 
or more adjacent nonobstacle cells must necessarily be multiple-valued. While this 
presents no conceptual difficulties, it usually results in computational time being 
spent on testing and additional bookkeeping chores. 
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The present SMAC extension may be used for the computation of two-dimen- 
sional flows with arbitrarily placed internal obstacles with none of the above 
difficulties. The flow field may be reduced to two-dimensional by setting f(z) = i 
and using 

r(x, y) = s(x, y) = b(x, y) - n(~, y) to define the obstacle. 

h flow without obstacles, for example, would have, 

r(x, y) = b(x, y) - a@, y) = r. , a constant. 

Obstacle cells are defined by having r values of --I’* . Thus, an obstacle cell 
with an r value of -r. will have, on the cell boundary adjacent to a full cell, an I 
value of zero. This insures that no quantity is fluxed through that cell boundary, 
and ceil-wise quantities stored for the obstacle cell do not effect the calculation. 
This may easily be illustrated by considering, for example, the #, Eq. (2’7). Let an 
obstacle be located at i + 1, j; see Fig. 2. The value of $ij is obtained from the 
Dij equation 

We can see that information coming out of the obstacle ceil (in this case $i+l,j) 
is multiplied by rii1,2,j = 0 so that it does not matter what value is stored for the 
potential function in the obstacle cell. Likewise, &+r,,: in the obstacle cell is 
independent of #‘s in the neighboring fluid cells. Thus, obstacle cells are compieteiy 
uncoupled from the fluid region, meaning that all cells can be treated equally 
without special tests to enforce the desired boundary conditions. Of course, the 
velocity on any cell boundary having r = 0 must be maintained at zero. 

Calcdational Examples 

The calculations for the following examples were all performed on the CDC 
6600 computer. Results are presented in the form of cell centered velocity vector 

FIG. 2. Obstacle cell treatment for two-dimensional Bows. 
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plots that were processed directly from the computer output on a Stromberg- 
Carlson 4020 Microfilm Recorder. The plots have been retouched only to show 
the location of the internal obstacle. In both examples, the fluid is viewed looking 
down the z axis at the x--y plane. For simplicity, both examples were calculated 
usingf(2) = 1. 

While the results were examined qualitatively to insure they are reasonable 
and stable, no quantitative comparisons with experiments were made. 

The first example shows the flow over an underwater pyramid (Fig. 3) between 
two flat plates. The calculation was performed with the pyramid stationary and 
a prescribed velocity at the left boundary and continuative outflow at the right. 
The continuative boundary condition was obtained by having boundary cells to 
right of the last column of computational cells. The E velocity of each boundary 
cell (i + 1,j) was set equal to the corresponding z7 velocity in the computational 
cell to the left (i,j), while the D velocity for the last computational cell (i,j) was 
set equal to the zi velocity in the next to the last computational cell (i - 1,j). 
The boundary conditions at z = a and z = b were free-slip. 

The velocity vector plots shown in Fig. 4 have been transformed by subtracting 
the input velocity so that the pyramid appears to be moving to the left through 
a stationary fluid. The Reynolds number based upon the obstacle width at the 
top, the obstacle velocity, and the fluid viscosity is 150. 

i 

L q 0.8 

o= i., 

d q 0.3 
Ii = 0.125 
h = 0.1 

0 

I 

FIG. 3. Underwater pyramid for problem shown in Fig. 4. 
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FIG. 1. Flow past underwater obstacle. 

The fluid directly behind the pyramid is being sucked along while Auid also 
spills over the top and around the sides resulting in a stagnation area across the 
‘back of the pyramid. This example illustrates that even for the severe case where 
h/H = 0.8 (see Fig. 3) the calculation proceeds stably and gives qualitatively 
reasonable results. 

To what extent the results are quantitatively accurate depends on the importance 
of the three-dimensional effects. It is apparent from the derivation of the approxi- 
mate equations, (1 l-13), that there will be limitations imposed by the introduction 
of the f function. As three-dimensional effects become more important the choice 
off will influence the accuracy of the results. Also, making the similarity assump- 
Con (Eq. 9) requires that 

a@ - a) ___- 
ZX 

and 8(b - ‘) be small. ay 

The above comments do not apply to the case of obstacles in two-dimensional 
flows since we are no longer trying to approximate three-dimensional effects. 

The second example (Fig. 5) illustrates a two-dimensional flow with an intercal 
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FIG. 5. Flow past two-dimensional obstacle. 
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obstacle. The boundary conditions on the sides of the obstacle are free-slip. The 
Reynolds number based on the obstacle width across the flow is 160 and the 
ratio of width to the distance between the plates is l/3. The calculation was per- 
formed with the obstacle stationary and prescribed input and continuative output 
boundaries on the left and right respectively. The results, however, are again 
presented with the velocity vectors transformed by subtracting the input velocity 
so that the obstacle appears to be moving to the left while the fluid is at rest. The 
fluid behind the obstacle forms a vortex street that is confined by the top and 
bottom plates. A small amount of raggedness appears at the top of the vortex 
leaving the computing area at the upper right. These perturbations were generated 
at the front face of the obstacle when the problem was started impulsively and 
could probably have been eliminated if a smaller 6t had been used for the first 
few computing cycles. However the perturbations remained bounded and were 
smoothly swept out of the continuative boundary. Subsequent vortices do not 
show this raggedness, as can be seen. 
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